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1. Introduction

Perhaps one may recognize that the theory of languages and automata is based
on certain properties of particular subsets of free monoids the so called rational
sets. Besides the uniqueness of factorization of words in free monoids plays a central
role in developing such a theory. It is thus not surprising that characterizations of
submonoids of free monoids which are also free has obtained considerable interest
from both semigroups and languages theorists. This naturally lead to study and
characterizing certain types of codes, i.e. the bases or generating sets of free monoids.
Prefix codes in particular has its significant role in the study of rational languages
and finite automata . In nature, there are different languages expressed in terms of
different (and disjoint) alphabets. Interaction between different languages may be
viewed as mappings (or translators) between the corresponding alphabets. Formally,
a natural model of the situation may have the structure of certain kinds of strong
semilattices of monoids, the so called free semilattices of monoids. In the present
work we discuss this structure to obtain its properties analogous to the basic known
properties of free monoids..

2. Preliminaries

For sake of reference and fixing notation we cite here some basic definitions and
results needed for our work.

A semilattice is a pair (S,≤) where S is a set and ≤ is a partial ordering on S
(i.e. ≤ is a reflexive, antisymmytric and transitive relation on S), such that every
pair of elements a, b ∈ S has a greatest lower bound a ∧ b in S.
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A semigroup S is called a band if every element a ∈ S is idempotent i.e. aa = a
(or a2 = a). Note that a semigroup S is a commutative band iff S (with the same
partial ordering) is a semilattice. Actually if S is a commutative band, then the
relation ≤ define on S by a ≤ b iff ab = a turns S into a semilattice where for every
pair a, b ∈ S, a ∧ b is given by ab (the product of a, b in S). Conversely, if (S,≤) is
a semilattice, then S is a commutative band with the operation in S defined by ∀
a, b ∈ S, ab = a ∧ b (= b ∧ a) = ba. (Thus in particular a2 = a = a ∧ a = a).

Let Y be a semilattice and let {Sα : α ∈ Y }be a collection of (disjoint) semigroups
of particular type z.

Then the disjoint union S = ∪
α∈Y

Sα is called a strong semilattice of semigroups

Sα , α ∈ Y if for all α, β ∈ Y with α ≥ β there exists a homomorphism

ϕα,β : Sα → Sβ

such that ϕα,α is the identical homomorphism, and for α ≥ β ≥ γ in Y,

ϕβ,γ ◦ ϕα,β = ϕα,γ .

We may write S = [Y, Sα, ϕα,β ] to indicate that S is a strong semilattice Y of
semigroups Sα, α ∈ Y.

If S = [Y, Sα, ϕα,β ] , then there is a (unique) operation on S that extends the
binary operation of Sα for every α ∈ Y, given by, for a, b ∈ S, say a ∈ Sα, b ∈ Sβ

ab = ϕα,αβ a ◦ ϕβ,αβ b.

Here the operation in RHS is the multiplication in Sαβ of the elements ϕα,αβa,
ϕβ,αβb in Sαβ .

In particular a strong semilattice of groups is a Clifford semigroup (i.e. a regular
semigroup with centeral idempotents). For our work we discuss the structure of
strong semilattices of monoids. In the rest of this section we cite from [5] some
requried materials.

A semigroup S is called an ε−semigroup (in words, epsilon semigroup) if it is
equipped with a unary operation ε : S → S, x 7→ εx, with the following axioms: for
all x, y ∈ S

(PM1) εx is idempotent (i.e. εx εx = εx)
(PM2) ε(εx) = εx (i.e. the operation ε is idempotent)
(PM3) εx x = x εx = x
(PM4) ε(xy) = εx εy

The element εx is called the partial identity of x. The subset of idempotents in
an ε−semigroup S is denoted by E (S) , and the set of all partial identities in S,
{εx : x ∈ S} is denoted by ε (S) .

If S is an ε−semigroup, then by (PM1), ε (S) ⊂ E (S) and so by (PM4), ε (S) is
idempotent subsemigroup of S.

A subset B of an ε−semigroup S is an ε−subsemigroup of S, if B is a subsemi-
group of S and εb ∈ B for every b ∈ B.

A mapping ϕ of an ε−semigroup S into an ε−semigroup T is an ε−homomorphism
if it preserves the operations of S, i.e. ϕ (xy) = ϕ (x) ϕ (y) , x, y ∈ S and ε(ϕx) =
ϕ (εx) , for all x ∈ S. Hence ε(ϕx) is the partial identity in T of ϕx, and εx is the
partial identity in S (of x).
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Clearly, the variety of ε−semigroups contains monoids, bands, and Clifford semi-
groups. Those ε−semigroup S for which ε (S) is in the center of S have a structure
theorem of strong sort. First, a definition:

An ε−semigroup S is called a partial monoid if (PM5) εx is central ( for all
x ∈ S)

If S is a partial monoid, then an ε−subsemigroup of S is called a subpartial
monoid of S. A partial monoid homomorphism is defined similarly.

In view of (PM2), we have ε (S) is an idempotent ε−subsemigroup (subpartial
monoid) of S whenever S is an ε−semigroup (partial monoid). In particular (by
PM5), if S is a partial monoid, then ε (S) is a commutative semigroup of idem-
potents, i.e. a semilattice (with the usual partial ordering εx ≤ εy iff εx εy =
εx)

Theorem 2.1. The following two statements about a semigroup S are equivalent.
(A) S is a partial monoid.
(B) S is a strong semilattice of monoids.

Remark. The above theorem shows that if S is a partial monoid, then S is a strong
semilattice of monoids

S =
[
ε (S) , Sεx , ϕεx,εy

]

We have for εx in the semilattice ε (S) , Sεx is the maximal monoid {y ∈ S : εy = εx}
with the identity εx and for εx ≥ εy (i.e. εx εy = εy)

ϕεx,εy : Sεx → Sεy , a 7→ aεy

Conversely, if S is a strong semilattice of monoids S = [ᵀ, Sα, ψα,β ] , then S is a
partial monoid with ε− operation for x ∈ S, say x ∈ Sα, εx = eα where eα is the
identity of the monoid Sα.

In [5] some topological and categorical aspects of partial monoids (not needn’t in
our present work) are obtained as well as a representation theorem says that every
partial monoid S is empeddablle in a certain partial monoid of partial mappings in
analogy with the same sort of theorem known for strong semilattices of groups i.e.
Clifford semigroups (see [1,2,5], where they are called partial groups) and for strong
semilattices of rings (see[3,4,7], where they are called partial rings).

In [5] examples are given to show that :
For an ε− semigroup S, ε (S) may be a proper subset of E (S) , i.e. an idempotent

in S may not be a partial identity.
There may exist different ε− semigroup structures on the same semigroup S.
There may exist an ε− semigroup S which is not a partial monoid (and hence

not a monoid).
Non trivial partial monoids exists, i.e. partial monoids which are not monoids

( These are introduced, in particular by partial mappings (from sets to monoids).
Less trivially, every partial monoid S is embeddablle in a certian partial monoid of
partial mappings [5, Theorem 3.4].

As shown in [5], it is easy to observe that the class of partial monoids is a variety
(Ω, E) of algebras for some generator domain Ω, and set of equations E, whence
free partial monoids exist. In the next section, we introduce explicit construction of
free partial monoids and develop the basic properties and characterization of them.
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Our references are, in semigroups, in general, [12,13,14,15,18,19], in semilattices
of monoids [5,6,8,9,10], and in free monoids and codes [9,11,16,17].

3. Free partial monoids. Construction and basic characterizations

Let A be a non empty (not necessarily finite) set. For every nonempty finite
subset B of A, let εB denote the identity element of the free monoid B∗ on B. In
other words, εB stands for the empty word in B∗. There exists a natural embedding
(satisfying the usual universal property)

ηB : B → B∗

Actually, ηB sends each element b in the set B to the word in B∗ that consists only
of one alphabet b.

Let ε (A) = {εB : B is a non empty finite subset of A} . Partially ordered ε (A)
by

εC ≤ εB if and only if B ⊂ C.

Then ε (A) with ≤ is clearly a semilattice, whence the greatest lower bound of any
εB , εC ∈ ε (A) is given by

εB ∧ εC = εB∪C .

Equivalently, ε (A) is a commutative band with binary operation given by

εB εC = εB∪C for all εB , εC ∈ ε (A) ,

and we have for all εB , εC ∈ ε (A)

εB εC = εC if and only if εC ≤ εB if and only if B ⊂ C.

For εB ≥ εC in ε (A) , (i.e. B ⊂ C), we define a mapping

ϕεB ,εC
: B∗ → C∗

as follows: For any non empty word w ∈ B∗, say w = ηB b1...ηB bn (bi ∈ B), we set

ϕεB ,εC
w = ηC b1...ηC bn.

For the empty word εB of B∗, we set

ϕεB ,εC εB = εC (the empty word in C∗).

We observe that ϕεB ,εC
is a well defined mapping (since B ⊂ C) and clearly a

monoid homomorphism. Actually, ϕεB ,εC
is a monoid monomorphism. It is also

easy to see that ϕεB ,εB is the identity automorphism of B∗ and that

ϕεC ,εD
· ϕεB ,εC

= ϕεB ,εD

for all εB , εC , εD in ε (A) , satisfying εB ,≥ εC ≥ εD. Summing up, we have a
strong semilattice of monoids

FPM (A) = 〈ε (A) , B∗ , ϕεB ,εC 〉.
Whence,

FPM (A) = ∪
εB∈ε(A)

B∗
εB

is a partial monoid, with operation (extending the operation of B∗
εB

, εB ∈ ε (A)
given by , for any two elements in FPM (A) , say

wB = ηB b1...ηB bn ∈ B∗ and wC = ηC c1...ηC cm ∈ C∗

16
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we have

wB · wC = ϕεB ,εB∪C
wB · ϕεC ,εB∪C

wC

= ηB∪C b1...ηB∪C bn ηB∪C c1...ηB∪C cm ∈ (B ∪ C)∗

We define a mapping

η : A → FPM (A) = ∪
εB∈ε(A)

B∗
εB

by
a 7→ η{a} a

i.e. sending each element a ∈ A to the word in {a}∗ consisting of one letter, namely
a.

Now, let S be any partial monoid and let ψ : A → S be any mapping of sets .
Define

−
ψ : FPM (A) → S

as follows: Let w ∈ FPM (A) , be arbitrary. Then, there is a (unique) nonempty
finite subset B of A,say B = {b1, b2, ..., br} and a unique (may be empty) subset
{bi1 , bi2 , ..., bin} of B, with

w = wB = ηB bi1 ...ηB bin .

Define
−
ψw = ψ bi1 ... ψbin

r∏

i=1

εψbi

where εψbi is the partial identity of the element ψbi in the partial monoid S. It
follows that for each wB ∈ B∗ we have

ε(−
ψ wB

) = εψb1
εψb2

...εψbr
=

r∏

i=1

εψbi .

Identifying a ∈ A with η{a} a and ε{a} with εa, then the identity εB , viewed as the
empty word in B∗, may be written

εB = εη{b1}b1 εη{b2}b2 ...εη{br}br

= εb1 εb2 ...εbr =
r∏

i=1

εbi

By the definition of
−
ψ,

−
ψεB =

r∏
i=1

εψbi , and since ε(wB) = εB , it follows that

ε−
ψ wB

=
−
ψ

(
ε(wB)

)
.

Clearly,
−
ψ is a partial monoid homomorphism, with

−
ψ

(
B∗

εB

) ⊂ S r∏
i=1

εψbi

, where

S r∏
i=1

εψbi

is the maximal monoid in S with identity
−
ψ (εB) =

r∏
i=1

εψbi .
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For every a ∈ A, we have
(−

ψ η

)
(a) =

−
ψ (η a) =

−
ψ

(
η{a} a

)

= ψa · εψa = ψa ,

whence,
−
ψ η = ψ, that is the diagram

A
η−→ FPM (A)

ψ ↘ ↓ψ̄
S.

commutes. If ϕ : FPM (A) → S is a partial monoid homomorphism with ϕη = ψ,
we have for any w ∈ FPM (A) , say w = wB = ηB bi1 ...ηB bin

∈ B∗ ( with
B = {b1, ..., br}),

ϕw = ϕ
(
η{bi1}bi1 ...η{bin}bin

· εB

)

= ϕη{bi1}bi1 ...ϕη{bin}bin
· ϕ (εB)

= ϕηbi1 ...ϕηbin · ϕ (εB)
= ψbi1 ...ψbin · ϕ (εB)

since ϕ is a partial monoid homomorphism, we have ϕ
(
B∗

εB

) ⊂ Sϕ(εB). Now,

εB = ε
(

η{b1}
b1 εη{b2}

b2...εη{br}br

)

thus

ϕ (εB) = ε
ϕ

(
η{b1}

b1 εη{b2}
b2...εη{br}br

)

= ε(ϕηb1...ϕηbr)

= ε(ψb1...ψbr) = εψb1 ...εψbr

=
r∏

i=1

εψbi .

Thus,

ϕw = ψbi1 ...ψbin · ϕ (εB)

= ψbi1 ...ψbin ·
r∏

i=1

εψbi

=
−
ψw.

Hence ϕ =
−
ψ. Therefore

−
ψ is the unique partial monoid homomorphism such that

−
ψ η = ψ.

Theorem 3.1. For any non empty set A, the partial monoid FPM (A) is (up to
an isomorphism) the free partial monoid on A.

18
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Remark. In the free partial monoid FPM (A), the effect of multiplying a ”word”
wB by an εC ∈ ε (A) (for some finite subsets B, C ⊂ A) is nothing but transforming
wB ∈ B∗ to the word wB∪C ∈ (B ∪ C)∗ having the same string of alphabets as
wB . In particular if b ∈ B, then ηBb ∈ B∗ may be viewed as η{b}b.εB . (Hence
η{b}b ∈ {b}

∗
) As we identify η {b} b = ηb with b, we may write ηBb = bεB . Thus if

wB = ηB bi1 ...ηB bin
is a word in B∗, we may write

wB = η bi1 ...η bin
εB

= bi1 ... bin εB .

It follows that each (non empty) word w in FPM (A) say w = wB , for some non
empty finite subset B of A,has a unique representation as product of alphabets from
B ⊂ A with εB .

In the rest of this section we give some characterizations of free partial monoids
analogous to the known characterizations [16] of free monoids. We start with a
definition.

Let M be a partial monoid (i.e. strong semilattice [ε (A) , Mεa
, ϕεa,εb

] of monoids).
We call a subset A of M a set of partial generators of (or partially generates) M if
for every b ∈ M, with b 6= εb, there is a finite set {a1, ..., ar} ⊂ A such that

b = x1x2...xn ε r∏
i=1

ai

with xi, i = 1, 2, ..., n (possibly not all distinct) are elements of {a1, ..., ar} .

Theorem 3.2. Let A be a (non empty) set, M a partial monoid and let i : A → M
be an injection onto a set of partial generators of M . The following two statements
are equivalent:

(a) M is free on i (A) .

(b) For any partial monoid M
′
and map ϕ : A → M

′
, there is a unique homo-

morphism of partial monoids
−
ϕ : M → M

′
such that ϕ =

−
ϕi.

Proof. (a) ⇒ (b). Let η : i (A) → M be the natural embedding (as in Theorem
2.1). Define ϕ

′
: i (A) → M

′
by i (a) 7→ ϕ (a) , where ϕ : A → M

′
is a given map.

ϕ
′
is a well defined map, since i is injection. By Theorem 2.1, there exists a unique

partial monoid homomorphism
−
ϕ
′

: M → M
′

such that ϕ
′

=
−
ϕ
′ ◦ η. We have ϕ

′

(i (a)) = ϕ (a) , (a ∈ A). Thus

ϕ (a) = ϕ
′
(i (a)) =

−
ϕ
′ ◦ η (i (a))

=
−
ϕ
′ (

i (a) εη i(a)

)

=
−
ϕ
′
(i (a)) ε−

ϕ′η i(a)

=
−
ϕ
′
i (a) .

Therefore, ϕ =
−
ϕ
′
i.

19
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(b) ⇒ (a) . Let M
′

= [i (A)]∗ be the free partial monoid on i (A) , and let
η : i (A) → M

′
be the natural embedding. Let ϕ : i (A) → M be the inclu-

sion map. As in the proof (a) ⇒ (b) , (since M
′

is free on i (A)), there is a partial
monoid homomorphism

Φ : FPM (i (A)) = M
′ → M

such that Φη = ϕ. That is Φη (i (a)) = ϕ (i (a)) = i (a) , (a ∈ A), and Φ is the
identity on the partial generators of M

′
. Let ψ : A → M

′
be given by

ψ = ηi : A
i→ i (A)

η→ M
′
.

By (b) there is a partial monoid homomorphism Ψ : M → M
′

such that Ψi = ψ.
For i (a) ∈ M, we have

Ψ (i (a)) = Ψi (a) = ψ (a) = ηi (a) .

Let x ∈ M, (x = εx) be arbitrary, say a = iaj1iaj2 ...iajn
ε r∏

l=1
i al

with ajk
∈

{a1, ..., ar} , k = 1, 2, ..., n (observe that i (A) partially generates M), and εx =
ε r∏

l=1
i al

. We have Ψx ∈ M
′

and so ψx ∈ B∗ for some finite set B = {b1, ..., br} ⊂

i (A) . Now clearly
εΨx = ε r∏

l=1
i al

which gives
εΦΨx = ε r∏

Φ
l=1

η i al

= ε r∏
l=1

i al

= εx.

Therefore,

ΦΨx = Φ(Ψi aj1 ...Ψi ajn)Ψ εx

= Φ(η i aj1 ...η i ajn) εΨx

= Φη i aj1 ...Φη i ajnεΦΨx

= ϕ (i aj1) ...ϕ (i ajn) εΦΨx

= i aj1 ...i ajnεx = x.

Thus ΦΨ = idM (the identity map M → M). Likewise, for x ∈ M
′
, say x =

η i aj1 ...η i ajnεx where εx is the identity of the maximal monoid, say B∗ in M
′
, for

some finite subset B = {i a1, ..., i ar} of i (A) . Thus εx = εB = εη i a1 ...εη i ar =
εη i a1...η i ar = εi a1... i ar . We have

ΨΦ (x) = Ψ (Φη i aj1 ...Φη i ajnΦ εx)

= Ψ
(
i aj1 ...i ajn εΦ(x)

)

= Ψi aj1 ...Ψi ajn εΨΦx

= η i aj1 ...η i ajnεx = x.

Thus ΨΦ = idM ′ . It follows that M is isomorphic to M
′
and the proof is complete.

¤
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Given a partial monoid M , we set S = M − ε (M) and

A =
{
x ∈ S − S2 : εx is maximal in ε (M)

}

Then we have:

Theorem 3.3. Let M be a partial monoid and let A be the subset of M defined as
above. The following two statements are equivalent:

(a) M is free on A.
(b) For each x ∈ M with x 6= εx, there exists a unique finite set {a1, ..., ar} ⊂ A

such that εx =
r∏

i=1

εai and x has a unique factorization

x = x1...xm εx

with {x1, ..., xm} ⊂ {a1, ..., ar} .

Proof. (a) ⇒ (b) . Follows from the definition of a free partial monoid and the
property of A.

(b) ⇒ (a) . Let M
′

be the free partial monoid on A, and let η : A → M
′

be the
natural embedding. Let

ϕ
′
: A → M

be the inclusion map, that is ϕ
′
(a) = aεa = a (a ∈ A). By the universal properly

(cf. Theorem 2.1), there exists a unique partial monoid homomorphism

−
ϕ
′
: M

′ → M

such that ϕ
′
=

−
ϕ
′◦η. We have ϕ

′
: A → M is the inclusion onto the partial generators

of M . Define

ψ : M → M
′

by

ψ (x1x2...xmεx) = ηx1ηx2...ηxm

r∏

i=1

εηxi .

Clearly ψ is partial monoid homomorphism and η = ψϕ
′
. Let b ∈ M. By (b), there

exists a unique set {a1, ..., ar} ⊂ A such that εb =
r∏

i=1

εai = ε r∏
i=1

ai

and b has a unique

factorization

b = b1b2...bn εb = b1b2...bn ε r∏
i=1

ai

21



S. K. Elagan/Annals of Fuzzy Mathematics and Informatics 1 (2011), No. 1, 13–23

with {b1, b2, ..., bn} ⊂ {a1, ..., ar} . As in the proof (b) ⇒ (a) of theorem 2.2 we can
show ε−

ϕ′ ψb

= εb. Thus we have

−
ϕ
′
ψb =

−
ϕ
′ (

ψϕ
′
b1...ψϕ

′
bn εψb

)

=
−
ϕ
′

(ηb1...ηbn εψb)

=
−
ϕ
′
ηb1...

−
ϕ
′
ηbn ε−

ϕ′ ψb

= ϕ
′
b1...ϕ

′
bn εb = b1b2...bn εb = b.

Thus
−
ϕ
′

ψ = idM . Let b ∈ M
′
, say b ∈ B∗ for some finite B ⊂ A, there exist

b1, b2, ..., bn ∈ A with
b = ηb1...ηbn εb.

We have

ψ
−
ϕ
′
b = ψ

(
ϕ
′
ηb1 ...ϕ

′
ηbn ε−

ϕ′ b

)

= ψ

(
ϕ
′
b1...ϕ

′
bn ε−

ϕ′ b

)

= ψϕ
′
b1...ψϕ

′
bn ε −

ψ ϕ′ b

= ηb1...ηbn ε
ψ

−
ϕ
′

b

= ηb1...ηbn εb = b.

Thus ψ
−
ϕ
′
= idM ′ . Therefore M = M

′
, and so, M is free on A. ¤

We may conclude directly the following

Corollary 3.4. Let M be a partial monoid satisfying one of the two equivalent
conditions of Theorem 2.3

(i) For every x ∈ M, Mεx is free monoid with finite set of (free) generators
{a1 εx, ..., ar εx } where {a1 , ..., ar } ⊂ A is the unique set such that εx =
r∏

i=1

εai . In particular, for every x ∈ A, Mεx is cyclic with one generator a,

where a is the unique element in A such that εx = εa

(ii) Every εx ∈ ε (A) = ε (M) has a unique factorization εx =
r∏

i=1

εai , ai ∈ A. In

particular if εx =
r∏

i=1

εai and εy =
s∏

j=1

εbj , ai, bj ∈ A then

εx = εy iff {ai : i = 1, ..., r} = {bj : j = 1, ..., s}
(iii) For every εa ≥ εb,

ϕεa, εb
: Mεa → Mεb

is a homomorphism of monoids.
22
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(iv) For every b ∈ S − S2, there exists a unique a ∈ A such that a εb = b.
(v) For every b ∈ S − S2, we have b εx ∈ S − S2 , for every εx ∈ ε (A) .
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